pH in Brewing

Leon van der Linden

June 2025

Scope: pH

- What it is...
- Why you should care...
- How to measure it and look after your probe.

What is pH?

- $pH = -log_{10}([H^+]) = -log_{10}([H_3O^+])$
- In range 1-14
- Neutral pH = 7
- Basic (more OH- than H+) range 7 14
- Acidic (more H+ than OH-) range 7 1
- Critical to note the log scale!

[H ₃ O ⁺] (M)	[OH ⁻] (M)	pН	рОН	Sample Solution
10 ¹	10 ⁻¹⁵	-1	15	-
10 ⁰ or 1	10 ⁻¹⁴	0	14	1 M HCl acidic
10 ⁻¹	10 ⁻¹³	1	13	gastric juice
10 ⁻²	10 ⁻¹²	2	12	lime juice 1 M CH ₃ CO ₂ H (vinegar)
10 ⁻³	10 ⁻¹¹	3	11	_ _ stomach acid
10 ⁻⁴	10 ⁻¹⁰	4	10	→ wine
10 ⁻⁵	10 ⁻⁹	5	9	coffee
10 ⁻⁶	10 ⁻⁸	6	8	_ rain water
10 ⁻⁷	10 ⁻⁷	7	7	pure water neutral
10 ⁻⁸	10 ⁻⁶	8	6	blood
10 ⁻⁹	10 ⁻⁵	9	5	baking soda
10 ⁻¹⁰	10 ⁻⁴	10	4	-
10 ⁻¹¹	10 ⁻³	11	3	 Milk of Magnesia
10 ⁻¹²	10 ⁻²	12	2	household ammonia, NH ₃
10 ⁻¹³	10 ⁻¹	13	1	- bleach
10 ⁻¹⁴	10 ⁰ or 1	14	0	1 M NaOH basic
10 ⁻¹⁵	10 ¹	15	-1	-

SABC

pH in the mash: Ideal mash pH range (5.2-5.6) for optimal enzyme activity.

Beta- Amylase	131°-150°F	5.0-5.6	This rest works well at 153°F as a compromise for beta and alpha rests. Creates small sugar chainsthat are highly fermentable and leaves the lowest finished gravity and lightest body. One of the diastaticenzymes required for saccharification.
Alpha- Amylase	149°-162°F	5.3-5.8	Produces glucose, maltose and un- fermentable dextrins. Leaves the highest finished gravity and fullerbody. Can be slower to work than beta- amylase. Most active at 158°F.

https://www.homebrewersassociation.org/how-to-brew/enzymes-in-beer-whats-happening-in-the-mash/

pH in the kettle

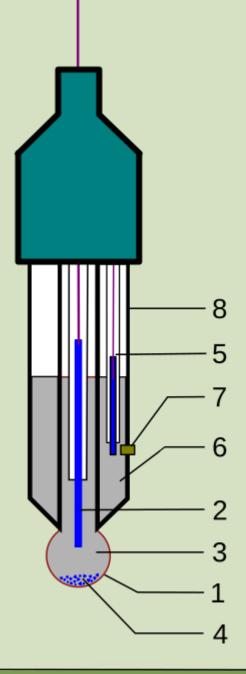
- pH influences hop bitterness extraction.
- Impact on protein coagulation and therefore beer clarity.
- Impacts flavour balance and mouthfeel.

pH During Fermentation

- Yeast thrives in a slightly acidic environment (pH 4.0-4.5).
- Impact on yeast health and fermentation efficiency.
- Affects final beer stability and microbial resistance.

pH in Finished Beer

- Typical pH ranges for different beer styles
 - Sour beers ~3.0
 - Lagers ~4.2 4.6
 - Ales ~ 3.8 4.6
- Affects taste, mouthfeel, and foam stability.
- Consistency in brewing.

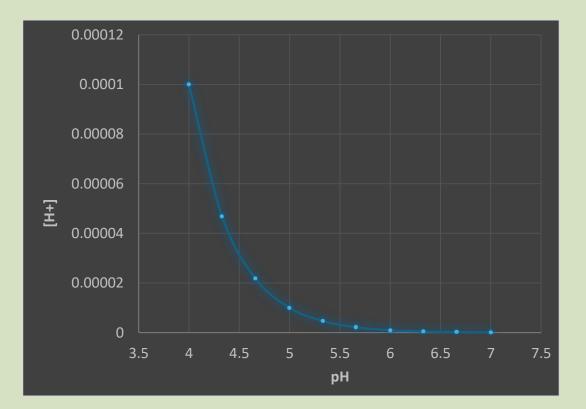

https://byo.com/article/the-principles-of-ph/

What does my pH probe do?

- Measures electrical potential (voltage) between electrodes (2,5) on different sides of a (fragile) glass membrane (1)
- The voltage depends on:
 - H+ activity in sample

SABC

- Age / depletion of electrolyte (3)
- Junction potential grime (7)
- Includes a temperature probe for Automatic
 - Temperature Compensation (ATC)



How do I use it and care for it?

- Before calibration
 - Check in pH = 4.0 buffer
 - Check in pH = 7.0 buffer
- IF required, calibrate with 7.0 and 4.0
- Cool your sample!

SABC

- Accurate readings
- Care for your membrane
- Remove and rinse, ASAP
- Blot to dry, no tapping, or shaking!
- Store moist or in 'storage solution' (3M KCl)

Is my probe broken?

- Did it dry out completely?
- Is it refillable?
- Did you drop it?
- Is your junction blocked up?
 →Junction potential test!

